Multiple Vehicle Detection and Tracking in Highway Traffic Surveillance Video Based on SIFT Feature Matching

نویسندگان

  • Kenan Mu
  • Fei Hui
  • Xiangmo Zhao
چکیده

This paper presents a complete method for vehicle detection and tracking in a fixed setting based on computer vision. Vehicle detection is performed based on Scale Invariant Feature Transform (SIFT) feature matching. With SIFT feature detection and matching, the geometrical relations between the two images is estimated. Then, the previous image is aligned with the current image so that moving vehicles can be detected by analyzing the difference image of the two aligned images. Vehicle tracking is also performed based on SIFT feature matching. For the decreasing of time consumption and maintaining higher tracking accuracy, the detected candidate vehicle in the current image is matched with the vehicle sample in the tracking sample set, which contains all of the detected vehicles in previous images. Most remarkably, the management of vehicle entries and exits is realized based on SIFT feature matching with an efficient update mechanism of the tracking sample set. This entire method is proposed for highway traffic environment where there are no nonautomotive vehicles or pedestrians, as these would interfere with the results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving Vehicle Tracking Using Disjoint View Multicameras

Multicamera vehicle tracking is a necessary part of any video-based intelligent transportation system for extracting different traffic parameters such as link travel times and origin/destination counts. In many applications, it is needed to locate traffic cameras disjoint from each other to cover a wide area. This paper presents a method for tracking moving vehicles in such camera networks. The...

متن کامل

Vehicle Tracking Using Feature Matching and Kalman Filtering

Aiming at contributing to the development of a robust computer vision traffic surveillance system, in this work a method for vehicle identification and tracking that applies the Scale Invariant Feature Transform (SIFT) and a Kalman filter is proposed. The SIFT algorithm extracts keypoints of the moving object on a sequence of images and the Kalman Filter provides a priori estimates of vehicle p...

متن کامل

Watershed Segmentation for Vehicle Classification and Counting

A robust video based system for the traffic surveillance system on the highway for vehicle detection, vehicle classification and counting for effective traffic analysis using only a single standard camera. The key goal of the proposed work is to successfully detect, track, classify and count the vehicle in partial occlusion and connected together by shadow on the highways. Marker-controlled wat...

متن کامل

Vehicle ’ s Tracking and Recognition Using a Distributed Surveillance System for Urban Traffic Management

This paper proposes an unsupervised vehicle’s tracking and recognition methods for urban Traffic surveillance in a distributed cooperative manner. Vehicle’s matching in a multi-camera surveillance system is a fundamental issue for increasing the accuracy of recognition. In intelligent transportation systems (ITS), especially in field of urban traffic management, intersections monitoring is one ...

متن کامل

Traffic Surveillance: A Review of Vision Based Vehicle Detection, Recognition and Tracking

Video-based analysis of traffic surveillance is an active area of research, which has a wide variety of applications in intelligent transport systems (ITSs). In particular, urban environments are more challenging than highways due to camera placement, background clutter, and vehicle pose or orientation variations. This paper provide a comprehensive review of the state-of-the-art video processin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JIPS

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016